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SUMMARY

A NASA-sponsored research program was conducted to investigate 1lift fan
noise reduction by configuration modifications. An existing lift fan, the
1.3-pressure-ratio, 36-inch-diameter LF336/A, was the test vehicle. Modifica~
tions tested included three outlet stator vane rows, two rotor-stator spacings,
and addition of acoustic treatment and acoustic exit louvers. The tests were
conducted at the General Electric Edwards Flight Test Center, using a test site
constructed specifically for acoustic testing.

For a lift fan aircraft, noise radiated in the rear arc is the most
important because of the orientation of the lift fan in the aircraft. Thus,
noise comparisons were made using data in that quadrant. The tests showed
that increasing the vane/blade ratio from 1.07 to 2.14 reduced the aft quadrant
sound power level (PWL) of the fundamental blade passing frequency about 7 dB
and the corresponding second harmonic PWL about 5 dB. This reduction amounted
to a decrease in the 150-foot arc perceived noise level (PNL) between 1 and 4
PNdB. Leaning the stator vane 30° in the direction of rotation reduced the
aft quadrant fundamental PWL about 4 dB and reduced the corresponding second
harmonic PWL about 5 dB. Selection of the lean angle for this stator was
arbitrary, and further analytical effort and testing will be required to
optimize the selection of vane lean angle in future fan designs. Increasing
spacing from 0.15 to 1 chord significantly decreased the tone noise and broad-
band noise, and resulted in a sideline peak PNL reduction of 5.4 PNdB.
Increasing spacing from 1 chord to 2 chords resulted in an additional PNL re-
duction of 1.3 PNdB, for a total reduction of 6.7 PNdB. An initial reduction
of 4 PNdB was obtained at 0.15 chord spacing by changing from 45 vanes to 90
leaned vanes. Changing to 2-chord spacing reduced the arc peak PNL another
2.5 PNdB; thus, the noise increment due to spacing with a leaned vane row was
less than that obtained with a radial vane row. Acoustic treatment was tested
with 90 leaned vanes at 2 chord spacing. Treatment was added to the flowpath
hub and tip walls and to an acoustic splitter on the surface facing the tip
wall. The treatment reduced the aft quadrant peak fundamental sound pressure
level (SPL) about & dB and the corresponding fundamental power level (PWL)
about 3.7 dB. The second harmonic SPL was reduced 5 dB and the second harmonic
PWL was reduced 4.9 dB. With the addition of acoustic treatment to louvers
used to vector the flow, the peak fundamental tone SPL was reduced 12.5 dB,
and the aft quadrant fundamental PWL was reduced 8.1 dB. The corresponding
noise reduction was 2 PNdB. Incorporation of all these modifications reduced
the aft quadrant fundamental and second harmonic power levels by 19.6 dB and
10.7 dB, respectively, and reduced the 150-foot arc peak PNL by 13.5 PNdB.
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INTRODUCTION

Potentially, one of the most serious problems facing commercial vertical
takeoff and landing (VIOL) aircraft is noise. Although no federal regulations
exist at this time, noise limits for VTOL aircraft probably will be at least
as stringent as those applied to conventional takeoff and landing aircraft.
The necessity of bringing the VTOL aircraft into city centers may require that
even lower noise levels be obtained. These low noise levels will in many
cases have to be obtained without the advantage of extensive use of acoustic
treatment. The podded or fan-in-wing lift fan installations do not lend them-
selves to large treatment areas since these configurations employ shallow in-
lets and little or no exhaust ducting. The only areas which can be treated
are within the fan frame and on the exit louvers. The generation of noise by
the 1lift fan must, therefore, be limited by judicious selection of the fan
cycle and geometry if low noise is to be obtained.

An extensive lift fan acoustic research program was conducted using the
LF336 as the test vehicle. The objectives of these tests were:

e To better understand the sources and propagation of lift fan noise

e To substantiate analytical noise prediction methods

e To evaluate noise reduction potentials for lift fans for changes
in stator configuration, rotor-stator spacing, and acoustic treat-
ments.

The tests were conducted in three phases:

e LF336/A Acoustic Tests

e LF336/B Modification and Acoustic Tests

e 1F336/C Modification and Acoustic Tests

LF336/A Acoustic Tests - The LF336/A is the design configuration which

has a rotor-stator axial spacing of 0.15 blade chord at the fan tip. Acoustic
measurements were taken on one fan under Contract NAS2-4970.

LF336/B Modification and Acoustic Tests - The LF336/B configuration is
the same as the LF336/A except the rotor-stator axial spacing was increased to
2 chords at the fan tip. Spacing hardware was manufactured and acoustic measure-
ments were taken on one fan under Contract NAS2-4970.

The LF336/A and LF336/B tests were conducted in January and February, 1969.
Test results are given in References, 1, 2, and 3.



LF336/C Modification and Acoustic Tests - The LF336/C denotes the fan in
a reduced noise configuration, with changes in vane geometry and spacing, and
with acoustic treatments. Hardware was manufactured and 12 tests were conducted
under Contract NAS2-5462. Testing began December, 1969 and was completed in
July, 1970. Test data are published in Reference 4. The basic areas of inves-
tigation on this program were:

e Vane number

e Split vane row

e Vane lean

e Rotor-stator spacing
® Acoustic treatment

® Acoustic exit louvers



dB

Deg

PNdB
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LIST OF SYMBOLS

Blade number

Decibels

Degrees

Zero or any positive or negative integer
Spinning lobe number

Perceived noise level units

Perceived noise level, PNdB

-13 Watts

Sound power level, dB re 10
Fan rpm

Sound pressure level, dB re 0.0002 dynes/cmz

Vane number



MODEL AND APPARATUS
LF336 Lift Fan

Geometry features offering potential noise reduction were investigated
by making practical hardware modifications to an existing lift fan, the
1F336/A. Two of these fans were built under the LF336/A High Pressure Ratio
Lift Fan Program (Contract NAS2-4130) for use in NASA wind tunnel investiga-
tions.

The LF336/A is a single-stage, turbotip, 1l.3-pressure-ratio, 36-inch-
diameter, rotor-stator 1lift fan driven by the full flow of one dry J85-5
turbojet engine, A fan cross section is shown in Figure 1, Table I is a
fan design point description., There are 42 blades, with a fundamental blade
passing frequency of 4230 Hertz at 100 percent rpm. There are 45 vanes, with
a rotor-stator axial spacing of 0.15 blade chord.

Special Hardware

Hardware was manufactured to provide the following configuration changes:
Three Vane Rows:

e Split vane row with 90 tip vanes and 45 hub vanes

® 90 vanes

® 90 vanes with 30° lean
Two Spacings:

e 1 chord and 2 chords
Acoustic Treatment:

e Hub and tip walls and acoustic splitter

Acoustic Exit Louvers

Table II lists the tests, test dates, and test configurations. A
balanced program was conducted, as shown in Table II, to investigate the
effgcts of vane geometry, vane-to-blade ratio, vane-blade spacing, acoustic
treatment, and acoustic exit louvers on lift fan noise.

Test Site
The tests were conducted at the General Electric Edwards Flight Test

Center, The test site is in an area free of buildings and obstructions and
was constructed specifically for acoustic tests. Figure 2 shows an overhead



view of the test site. Figures 3 and 4 show two ground-level views of the
test site. The control room protrudes only 2 feet 6 inches above the ground.
The test stand is mounted on a concrete surface. The area surrounding the
sound field consists of desert sand and brush.

Figures 5 and 6 show two views of the fan installed on the test stand.
The fan bellmouth inlet was mounted flush with a flat steel plate to simulate
a wing or pod upper surface. The fan was 10 feet above the ground with the
fan flow parallel to the ground. The J85 gas generator was connected to the
fan by a pants-leg-duct arrangement which delivered the full J85 exhaust to
the fan scroll, A sound suppressor was mounted to the J85 inlet to reduce
engine compressor noise far below the lift fan noise,

INSTRUMENTATION AND DATA REDUCTION

Sound Field

All acoustic data measurements were made using Bruel-Kjaer microphone
systems. Model Numbers 4133 and 4134 microphones were used for far-field
measurements, and Model Number 4136 microphones were used for probe measure-
ments.

Far Field Microphones - Figure 7 is a sketch of the far field microphone
arrangement. Seventeen microphones were installed 10 degrees apart along a
circular arc., The microphone arc radius was 250 feet for the LF336/A and
LF336/B tests. For the LF336/C tests, the arc radius was changed to 150 feet,
and one additional microphone was installed at a 250-foot radius at 120
degrees from the fan inlet,.

For the acoustic louver test, additional microphones were installed at
a 150-foot radius at angles greater than 180 degrees (see Figure 7) to
measure noise directivity with the louvers deflected. All far-field micro-
phones were installed in a plane which passed through the fan axis and was
parallel to the ground.

Acoustic Probes - For all tests, one fan inlet probe and one fan exhaust
probe were used. In addition, for the acoustic louver test, a third probe was
used at the louver discharge. Figure 8 shows the fan inlet and exhaust probes
installed. The open end of the probe was immersed in the flow passage, with
the microphone mounted outside at the end of the probe tube. A 40-foot
length of tubing was wound into a coil and attached at the end of the probe
mounting block to eliminate reflection and standing waves. The probe assembly
was driven by a remote-controlled actuator to translate the sensing end of the
probe to any desired immersion setting.

Acoustic Data

Data Acquisition - The output of each microphone was fed to an amplifier
for attenuation or amplification, This output was then recorded on a Hewlitt-
Packard Model 3900 FM tape recorder operated at 30 inches of tape per second
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with a system response of O to 20,000 Hertz. Figure 9 shows a schematic of
the complete data acquisition system. Figures 10 and 11 are two views of
the control room showing the recording equipment used.

Data Processing - All 1/3-octave data processing was performed using a
high-speed computerized data system developed by General Electric. The basic
components of the system are a Bruel-Kjaer 1/3 octave filter bank, a high-
speed electronic scanning system for the filters, an analog-to-digital con-
verter, and an SDS-920 computer. Each data channel was processed for a
continuous 30 seconds integration time to obtain the following acoustic
data:

1, One-third octave sound pressure levels corrected to sea level
standard day conditions

2, Overall sound pressure levels calculated from the corrected
1/3-octave sound pressure levels, and overall sound pressure
levels as obtained directly from the tapes

3. Directivity indices

4, Calculated perceived noise levels, using SAE Aerospace recom-
mended practices

5. Extrapolation of the 1/3-octave sound pressure levels, overall
sound pressure levels, and perceived noise levels to 200- and
500-foot sidelines

6. One-third-octave sound power levels, corrected to the source

All narrow-band data were processed by a Federal Scientific UA-6A real
time analyzer. A 50-Hertz constant bandwidth filter was used for the LF336/A
and /B tests, and a 20-Hertz constant bandwidth filter was used for the LF336/C
tests. For each narrow-band plot, 256 scans of the entire spectrum were made
using a continuous 12, 8-second integration time.

Equipment Calibrations - The probes were calibrated in the laboratory
to determine insertion loss characteristics. Prior to testing, a frequency
response check of the complete recording system was made by inserting a con-
stant voltage at various frequencies into the cathode follower of each far-
field and probe microphone and recording the resulting signal on the tape
recorder. This tape was used to determine the record and playback charac-
teristics for the 1/3-octave tabulations and the narrow-band plots. This
system calibration was repeated during the test program.

Before and after each day's testing, an absolute level calibration was
conducted. A known noise level was inserted directly on each microphone
using a Bruel-Kjaer pistonphone and the output recorded. Any microphone
deviating more than * one decibel from the manufacturer's output voltage
specification was replaced.



Corrections to Acoustic Data - Corrections made to the acoustic data
were:

1, System record and playback frequency response, determined
from the calibrations

2. Electronic data processing equipment frequency response, determined
from the computer data reduction of the calibration tapes

3. Wind screen frequency response. A Bruel-Kjaer Number 0082 wind
screen was used on the 160-degree microphone to reduce noise
levels caused by fan exhaust impingement. Where additional
microphones were installed between 190° and 210°, Bruel-Kjaer
UA0237 wind screens were used,

4, Probe insertion loss, measured by laboratory calibrations

5. Atmospheric corrections and ground attenuation corrections were
made using SAE Aerospace Recommended Practices,

All data presented in this report contain these corrections except the
machine-generated narrow-band plots, The narrow-band analyzer does not have
the capability of incorporating data corrections, therefore these plots are
"as recorded' uncorrected data.

DISCUSSION OF RESULTS

The acoustic tests results are discussed in the following pages, The
effects of acoustic features on fan performance are discussed in Appendix A,

It should be kept in mind that this fan, as studied, is a lift fan,
Thus, in flight the arc location nearest the observer is at 180° and the
noise in that part of the arc is most important. On the other hand, with
the aircraft on the ground, the noise at 90° is most important. Therefore,
noise measurements in the aft quadrant are most significant.

Vane Number

The baseline vane configuration was the 45-vane stator originally
designed for the LF336, The baseline results were compared to those obtained
using a 90-vane stator. The vane rows are shown in Figure 12.

Several investigations‘5® 6> 7> 8nd 8) .gnqyucted over the last ten years

have indicated that noise reductions can be obtained by maintaining a vane-to-
blade ratio of 2 or greater. These noise reductions have been shown to result
from decreased pure tone generation and from the well-known cut-off phenomenon,

The decreased tone noise generation is a result of the decreased effi-
ciency of energy transfer between the noise source and the modes of propaga-

tion within the fan flowpath. In theory, the higher vane/blade ratios produce

7



spinning lobe patterhs which result in less efficient propagation and gene-
ration of blade passing frequency noise. The lobe number "m" for the funda-
mental blade passing frequency is given by:

m B - kV

where: B = number of rotor blades
= number of stator vanes

= zero or any positive or negative integer

The most important lobe numbers are the lowest numbers resulting from
the above equation for various values of k, since the lowest numbered spin-
ning lobe patterns contain the largest part of the acoustic energy. The
first four lobe numbers for 45 vanes and for 90 vanes are shown in Table III.
It can be seen that with 42 blades, the 45-vane stator has a lowest lobe
number of 3, while the 90-vane stator has a lowest lobe number of 42,

The cut-off phenomenon may or may not be operative for the 1ift fan
depending on the theory evoked. In Reference 5, an exhaust duct is required
in order to get attenuation, The 1lift fan has no ducting behind the outlet
guide vane; and, therefore, the cut-off mechanism may not commence before
the acoustic energy is propagated to the far field. Reference 8, however,
proposes a theory which does not require a duct for cutoff., If this theory
applies, the spinning modes in the 1lift fan will decay. The theory of cut-
off(5) defines the first mode cut-off speed to be 670 rpm for the 3-1lobe
pattern and 7590 rpm for the 42-1lobe pattern., That is, for all practical
fan speeds, the 45-vane configuration is not cut off while the 90-vane config-
uration is always cut off,

Figures 13 through 17 show the effect of increased vane number at 95
percent speed with one-chord spacing. Figure 13 indicates that both tone
power level (PWL) and peak arc sound pressure level (SPL) have been signifi-
cantly reduced. Figure 14 shows the directivity of the second harmonic of
the blade passing frequency for the two configurations. Although the reduc-
tion is not as great as it was for the fundamental, there has been a decrease
in the aft peak second harmonic SPL of 3 dB and a sound power level (PWL)
decrease of 5.2 dB., Figures 15 and 16 are machine-generated uncorrected com-
parisons of narrow-band (20 Hertz) spectral analysis for the two vane rows.
The blade passing frequency and second harmonic decreases previously noted
are clearly evident., There has also been a broadband noise decrease,

Figure 17 shows the perceived noise level (PNL) around the 150-foot
arc, It can be seen that PNL has decreased all around the arc except in
the most forward angles. Noise reductions of up to 4 PNdB were obtained
at the most rearward angles. These angles are the most important to 1ift
fan noise, since noise generated at these angles will have the shortest
acoustic range relative to the ground plane.



Split Vane Row

Figure 12 shows the split vane row, There are 45 vanes in the hub area
and 90 vanes in the tip area. The lower number of vanes in the hub area
avoids the weight and performance penalties associated with compromises to
optimum vane shapes and solidities usually associated with many small full-
span vanes, It was hoped that this stator would acoustically represent
the full 90-vane stator, because theoretical calculations and experimental
work done by General Electric indicate that the major source of noise occurs
in the outer third of the flowpath., Furthermore, when a vane/blade ratio of
two or more is used, the propagating acoustic energy tends to concentrate in
radial modes with sound pressure level distributions that are highly peaked
toward the flowpath outer wall.

Figure 18 shows the distribution of the blade passing frequency SPL
around the arc for the 45-, 90-, and split (90/45) vane rows. At a few
angles, the 90/45-vane stator shows lower noise than the 45-vane stator;
however, at all aft angles, the 90-vane stator is significantly lower than
the 90/45-vane stator - the difference ranging from 1% dB at 120° and 130°
to 84 dB at 140°, The results for the SPL of the second harmonic are shown
in Figure 19, Here, the split-vane row shows higher noise than both the
45- and 90-vane rows at angles between 120° and 150°, Figures 20 through 22
show comparisons of the narrow-band spectra. In each case, the 90-vane stator
is lowest in both tone and broadband noise content, The 90/45-vane stator
also shows a tendency to produce high-frequency noise between 6 and 8 KHz,
Figure 23 contains the PNL directivity. In general, in the aft quadrant,
the 45-vane stator is lower than the split-vane stator. These test results
show that, at least as configured here, the split-vane row was a poor acoustic
simulation of a high vane/blade ratio design,

Vane Lean

A leaned vane differs from a conventional vane in that it is nonradial,
Leaned vanes reduce noise generation by decreasing the strength of the
viscous wake interaction and by phasing that interaction so as to produce
a degree of phase cancellation. Small-scale experimental programs have been
conducted to determine the effect of nonradial vanes on fan-generated
noise(7’ 9) These experiments were all based on inlet guide vane rotor
interactions; and, therefore, their results are not directly applicable to
the rotor-outlet guide vane lift fan design. 1In the case of the rotor wake -
OGV interaction, some consideration must be made of the lean direction if
the most efficient design is to be obtained., The lean angle is defined as
the angle between a radial line and the nonradial vane, measured at the fan
hub. The lean angle is in the direction of fan rotation in order to increase
the amount of the aerodynamic lean (nonradial rotor wakes) inherent in fans
and compressors.

Figure 12 shows the leaned-vane row, which has 90 vanes at 30° of lean,
Figure 24 shows the blade passing frequency SPL for the leaned and unleaned
90-vane stators at 95% fan speed at the 2-chord spacing. The leaned stator
shows significant reduction at angles of 80° through 130°, with the peak aft
quadrant sound pressure level dropping 7 dB.
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There is, however, an unexplained increase in the front quadrant, This
is not as detrimental to the 1ift fan as it might be to a turbofan, due to the
1ift fan's vertical orientation. Figures 25 and 26 show the corresponding
inlet and exhaust acoustic probe data. Figure 25 indicates an increase in
the inlet radiated noise as was seen in the arc data. The exhaust level,
Figure 26, shows a large decrease in noise almost all the way across the
span, Figures 27 through 29, respectively, contain the arc, inlet probe,
and exhaust probe data for the second harmonic. The trends are the same as
previously noted for the fundamental. The aft quadrant peak noise decreases
about 8 dB, while the inlet probe (Figure 28) shows no net reduction, and the
exhaust probe (Figure 29) indicates a large noise decrease.

Figures 30 and 31 are overlays of the 20-Hz, band-pass filter narrowbands
at 110° and 140°, Here, as in the case of the 90-vane versus 45-vane stator,
the tone noise decrease has been accompanied by a broadband noise decrease,

At the 110° location, a new noise source appeared with lean at 1400 Hz, The
source of this tone is unknown.

Figure 32 shows the resultant PNL directivity. The PNL is seen to have
decreased in the aft quadrant but increased in the front quadrant, The aft
quadrant peak reduction was about 13 PNdB. This reduction was limited by
the tone at 1400 Hz, Figures 33 through 41 show similar data at 80% fan
speed, Figures 33 through 35 indicate some blade passing frequency noise
reduction, particularly as seen in the probe data. Figures 36 through 38,
for the second harmonic, show appreciable reduction throughout the aft
quadrant, Figures 39 and 40 are narrow-band overlays at 110° and 120° at
80% speed. Once again, the decreased broadband noise is noted, Figures 41
and 42 are the PNL directivities at 80% and 50% fan speed, The reduction
in blade passing frequency PWL occurred at all fan speeds, as shown in
Figure 43.

These results show lean to be very effective in reducing fan noise.
However, further analytical effort and testing will be required to optimize
the selection of vane lean angle in future fan designs, The effectiveness
of lean is a function of the fan aerodynamic design, rotor-stator spacing,
vane number, and blade number,

Rotor-Stator Spacing

It has long been recognized that the most direct method of reducing fan
noise is to increase the spacing between the moving and stationary blade rows,
The increase in spacing effectively eliminates potenfial interaction noise and
greatly reduces viscous wake interactions. The potential interaction is a
result of the interference between the pressure fields associated with moving
and adjacent stationary blade rows., When such an interaction takes place,
there are actually two noise sources developed. The rotor pressure field
disturbs the stator pressure field making it a source of blade passing fre-
quency noise, and the stator pressure field disturbs the rotor pressure field
making it a second noise source, In general, for a high vane-to-blade ratio
fan, the former is greater than the latter.
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Figure 44 is a presentation of some typical theoretical results(®> ll).
The figure shows the magnitude of the two potential interactions and the
viscous wake interaction for increasing rotor-stator spacing. It can be
seen that the viscous wake interaction is not only dominant, but decreases
at a slower rate with increasing rotor-stator spacing. At about one rotor-
tip-chord spacing, the potential interaction noise is essentially zero.
Spacing increases produce significant noise reduction up to about 2.0 rotor
chords. Further reduction is possible with further spacing increases(lo);
however, the results are seldom justified in view of the overall weight
penalties.

It has been shown theoretically‘!l’ that the effect of spacing on blade
passing frequency noise is difficult for different aerodynamic designs. To
establish the spacing-versus-noise trends for 1ift fans, tests were conducted
at spacings of 0,15, 1, and 2 chords using 45 vanes and 90 vanes, The 0,15~
chord spacing is typical of a conventional fan design where low noise is not
an objective., The 1l-chord spacing represents a moderate spacing design. The
widest spacing used was two rotor tip chords., As pointed out previously, the
1- and 2-chord spacings essentially eliminate potential interaction as a pure-
tone noise-generating mechanism.

Figures 45 through 48 present the three 45-vane test results at 100%
speed., It can be seen that there has been a substantial decrease in noise
in going from the 0,15-chord spacing to the 1- or 2-chord spacings. However,
the 2-chord spacing decreased the noise below that measured at 1 chord only
between 70 and 110 degrees, as can be seen in Figures 45 and 46. Figure 47
is a plot of blade row spacing versus the fundamental and second harmonic aft
quadrant power levels and the maximum 150-foot arc PNL, Each curve shows a
sharp drop when spacing is increased from 0.15- to l-chord spacing with a
decreased slope from 1- to 2-chord spacing, The arc PNL, shown in Figure 48,
shows a large decrease in going from 0.15- to 1l~chord spacing, with a reduction
of peak noise of 5.8 PNdB. The increase in spacing to 2 chords is seen to
reduce the noise an additional 0,6 PNdB for a total reduction due to spacing
of 6,4 PNdB on the 150-foot arc.

Figures 49 through 53 are narrowband overlays of the 0.15- and 2-chord
spacing configurations. As noted previously, the tone reduction has been
accompanied by an appreciable broadband decrease. This broadband reduction
is very large and is most likely due to the reduction in the strength of the
random inlet turbulence to the stator. The random turbulence in the rotor
wakes impinging on the stator results in a random lift fluctuation which in
turn manifests itself in broadband noise(g). The initial increase in spacing
most probably gives this random turbulence a chance to dissipate to such a
point that other sources of broadband noise are dominant.

Figures 54 through 59 show some results from spacing variations using
90 leaned vanes. Figure 54 shows no consistent trend for noise at the blade
passing frequency; however, comparison with radial vanes in Figure 45 shows
the fundamental to be reduced 6 dB at the 0.15-chord spacing. Also, Figure 55
for the second harmonic shows the 2-chord spacing to have produced a signifi-
cant noise reduction over the 0.15- and l-chord spacing.
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Figures 56 through 58 are narrowband comparisons of the three spacings,
The second harmonic reduction is clearly seen. In addition, the broadband
noise has been reduced, This broadband reduction is also seen where there is
no appreciable blade passing frequency tone reduction,

Figure 59 is the resulting 150-foot arc PNL., With leaned vanes, 2-chord
spacing reduced PNL by 2.5 PNdB, as compared with 6,7 PNdB for 45 radial vanes;
but, the PNL with 2-chord spacing was about the same. Thus, the change in
vane number and the addition of lean reduced noise about 4 PNdB at the 0,15-
chord spacing.

Without lean, increasing spacing from 0.15 to 1 chord resulted in signi-
ficant noise reduction. With and without lean, increasing spacing from 1 to
2 chords reduced noise, but not as dramatically.

Acoustic Treatment

Treatment of the fan flowpath hub and tip walls, shown in Figure 60,
consisted of single-degree-of-freedom resonators made of 3'"-thick honeycomb
having 3" cells. The face plates were 0.030" thick, perforated with 0,0625"-
diameter holes to give a 10% porosity. (Porosity is the ratio of total hole
area to the area of an unperforated sheet,)

The acoustic splitter (Figure 61) had two-degree-of-freedom resonators
0.3" thick, covered by face plates with the same hole size and porosity as
used on the flowpath wall treatment. The splitter was treated on one side
only, on the surface facing the tip wall, The flowpath walls could not be
opened up enough to use a thicker splitter treated on both sides, although
this would have been preferred. Figure 62 shows the fan during assembly,
with the wall treatment and splitter installed. Removable solid covers were
made for the walls and splitter, so that the 2-chord spacing configuration
could be run with or without treatment,

Figures 63 and 64 are comparisons between treated and untreated flow-
paths for the blade passing frequency and the second harmonic. As might be
expected, the aft quadrant noise has decreased. There are also some decreases
in the extreme (less than 40°) front quadrant angles, These noise reductions
can be seen in the probe data in Figures 65 through 68, In particular, it
should be noted that there is an inlet noise reduction even though the
treatment is all aft of the rotor. It may, therefore, be speculated that
some of the tone energy is being radiated forward from the stator and passes
over the treatment while traveling in the upstream direction., Figures 66
and 68 show that the most significant exhaust suppression has occurred out-
board of the splitter. This is to be expected, since the relatively small
distance between the two treated surfaces (splitter and tip wall) makes an
efficient trap for acoustic energy.

Figure 69 shows the 150-foot arc PNL, It can be seen that not only
has the aft quadrant noise decreased but an appreciable front quadrant
reduction is observed as well, The peak PNL has been reduced about 4 PNdB.
Some insight into these reductions can be obtained from the narrowband filter
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comparisons of Figures 70 through 73, Each of the angles shown indicates a
considerable broadband noise decrease. Of particular interest are Figures 72
and 73 for 160° and 60°, respectively. At these angles, even though there
has been no blade passing frequency reduction, the broadband noise decrease
has resulted in the PNL reductions shown in Figure 69.

Figures 74 through 79 show data for the treated and untreated configu-
rations at 80% fan speed. The spectral details (Figures 72 through 79) show
characteristics similar to those observed at 95% speed. The maximum arc PNL
has been reduced about 2,8 PNdB as seen in Figure 76,

Although in some instances the acoustic treatment did not reduce the
blade passing frequency tones, considerable noise reduction did result, veri-
fying that treated walls plus splitter(s) will provide effective noise
reduction in 1ift fans. The amount of treatment and the treatment geometry
used in these LF336 tests were limited to practical modifications of existing
hardware., A fan design incorporating acoustic treatment from the start could
not only have additional splitters but could have treatment tuned to the most
effective maximum suppression frequency,

Acoustic Exit Louvers

Lift-fan-powered aircraft utilize louvers at the exit of the fan to
obtain thrust vectoring for transition between vertical and horizontal flight.
The position of these louvers, directly across the exhaust stream, makes them
ideally suited for inclusion in the fan suppressor system.

The acoustically-treated louvers are shown in Figure 80. The louver
cascade consisted of eight airfoils, each 0,58" thick with a 7.9" chord. The
airfoils were treated on both sides with 2-degree-of-freedom resonators. The
louvers were tested with and without end plates, The end plates were steel
plates attached to the octagonal louver frame shown in Figure 80, to enclose
the fan discharge within the acoustic louver cascade., The end plates were
provided to determine if any appreciable acoustic energy radiated from the
open ends of the louver cascade,.

The tests were run using the 90-leaned-vane stator at two-chord spacing
with wall and splitter acoustic treatment. Thus, these results represent the
lowest noise levels measured during the test program, Figures 81 through 86
present some results of the louver tests without end plates, The fundamental
and second harmonic levels shown in Figures 81 and 82 for 95% fan speed are
rather disappointing. The data with louvers show no improvement, and even
show increases in many of the rear angles. The aft quadrant PWL's of each
tone also indicate a slight increase, The 80% fan speed data in Figures 83
through 86, however, show much more favorable results, Figures 83 and 84
for the pure tones show reductions at all aft quadrant angles, with a parti-
cularly large decrease in the fundamental., The resulting PNL distribution
is shown in Figure 85, The maximum—arc PNL has decreased 2 PNdB, The narrow-
band comparison in Figure 86 shows the spectral details at 110°, Although
the second harmonic has not been appreciably reduced, there has been some
high frequency broadband noise reduction. The reason for the less-than-
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desirable results at 95% fan speed is probably twofold. First, at high power
settings, the Mach number of the flow over the louvers is quite high, of the
order of 0.7. High Mach numbers are known to reduce the effectiveness of
resonator treatment., Second, the louvers tend to backpressure the fan
slightly at high power settings, which in turn may increase the noise gene-
rated due to the higher aerodynamic loading. At 80% fan speed, however,

both of these phenomena are reduced in importance, The reduced treatment
effectiveness can be largely overcome by redesigning the treatment for these
high Mach numbers; however, this may require compromises in treatment design.,

Figures 87 through 91 present a comparison of data at 80% fan speed
taken with and without end plates., The fundamental blade passing frequency
tone has, in general, increased with the addition of end plates while the
second harmonic level shows only small changes. The resulting PNL (Figure 89)
indicates almost no difference in the aft quadrant with or without the end
plates, The narrowband comparisons of Figures 90 and 91 show that even though
the blade passing frequency tone has increased with end plates, there has been
a reduction in broadband noise at frequencies above and below the fundamental
up to the second harmonic. The high frequency noise increase with end plates
does not have a significant effect on PNL due to low annoyance weighting at
these frequencies,

Figures 92 through 96 contain data with the louvers set at 0° (not turning
the flow) and at a 30° vector angle. For these tests, additional microphones
were placed beyond the normal 160° aft quadrant angle. These microphones were
located at 170°, 190°, 200°, and 210° with respect to the fan inlet axis, in
order to gain information on the acoustic directivity asymmetry caused by the
vectored louvers, Figures 92 through 94 clearly show for the fundamental,
second harmonic, and arc PNL, the directivity shift at 80% fan rpm when the
louvers are turned 30°. Similar effects were observed at higher fan speeds,
The peak fundamental and second harmonic levels are in the front quadrant,
although the vectored configuration shows a higher level, The minimum in the
directivity is at 150°, 30° from the unvectored jet axis. The tone level also
increased in the inlet quadrant when the louvers were deflected. The arc PNL
in Figure 94 shows the same trends as seen for the tones. However, the PNL
at 200° has increased with the vectored louvers to the point where it equals
the peak at 70°. Figures 95 and 96 are the spectral details at 190° and 200°,
At both angles the noise level has increased at all frequencies, Further
investigation will be necessary to find the cause of this phenomenon.

In summary, the louvers have reduced noise at 80% fan speed but will
require careful design to make them effective at high fan speeds and high
flow Mach numbers.

Some Overall Comparisons
The test program on the LF336 1ift fan began with a conventionally-
designed single-stage fan and proceeded through various practical design
modifications with the primary intention of reducing noise while maintaining

aerodynamic and mechanical performance. Figures 97 through 104 show some of
the noise reductions obtained.
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At 95% fan speed, Figures 97 through 100 show, respectively, the funda-
mental, second harmonic, arc PNL, and 200-foot sideline PNL reductions for
90 leaned vanes at 0.15-chord spacing and at 2-chord spacing with frame
treatment., The aft quadrant fundamental power has been reduced 11.8 dB,
while the second harmonic power is down 13,0 dB., The peak PNL on the 200-foot
sideline is down 8 PNdB., It is also interesting to note that at 0,15-chord
spacing, the change in the design of the stator from 45 radial vanes to 90
leaned vanes has resulted in a 4 PNdB peak sideline noise reduction,

Figures 101 through 104 show the noise reductions for the fan at 80%
rpm with 90 leaned vanes, two-chord spacing, with frame acoustic treatment,
and acoustically-treated louvers, The fundamental and second harmonic aft
quadrant power levels have decreased 19.6 and 10,7 dB, respectively, The
arc peak PNL reduction was 13.5 PNdB, and the 200-foot sideline reduction
was 11,5 PNdB,

Comparisons With Predictions

Prior to the conduct of the tests, estimates of the reductions in the
500-foot sideline maximum PNL were calculated for some of the configurations
to be tested., Existing analytical techniques'were used to calculate esti-
mated effects of spacing, vane number, acoustic treatment, and acoustic
louvers, No analytical techniques for vane lean acoustic calculations were
available at that time.

Spacing - Figure 105 shows the prediction and resultant data for the
45-vane configuration at three spacings. In general, the comparison is good.
The data scatter at 0.15-chord spacing is typical of scatter of tone controlled
spectra.

Vane Number - Changing from 45 vanes to 90 vanes lowered the 150-foot
arc PNL between 1 and 4 PNdB for all but the most forward angles (Figure 17).
Extrapolating these results to the 500-foot sideline, the peak PNL reduction
was about 1 PNdB compared to a predicted reduction of 1.9 PNdB.

Treatment -~ The addition of acoustic treatment lowered the 150-foot arc
peak PNL about 4 PNdB (Figure 69). Extrapolating these results to the 500~
foot sideline, the peak PNL was reduced 2.8 PNdB compared to a predicted value
of 4,5 PNdB.

Treated Louvers - Acoustically-treated exit louvers reduced the 150-foot
arc PNL as shown in Figure 85, Extrapolating these results to the 500-foot
sideline, the peak PNL was reduced about 2 PNdB compared to a predicted value
of 2,3 PNdB.

Sideline Extrapolations
Table IV shows the projected 500- and 1000-foot sideline maximum PNL

for four of the configurations tested. These extrapolations are based on
spherical divergence and standard day air attenuation t2)
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In the LF336/C tests, the fan was mounted on a ground pad with the fan
axis parallel to the ground. In Figure 106, the fan is considered mounted
in a wing of a vertically-rising VIOL aircraft, The 150'-arc data from the
90 leaned, two-chord spacing, treated frame test were extrapolated using
spherical divergence and air attenuation corrections (no ground plane attenu-
ation was included). From these extrapolations, the PNL versus altitude
curves of Figures 107 and 108 for 80% and 95% fan speed were obtained.

The salient feature of these figures is the point of maximum PNL at each
sideline distance, 1In Figure 108, an observer at a 200-foot sideline
experiences an increase in PNL until the fan reaches an altitude of about
80 feet. Beyond this point, PNL decreases continually as the fan rises.

At 80% speed the point of maximum PNL is at a lower altitude. At the 2000-
foot sideline, the maximum PNL occurred at a 575-foot altitude for 95% and
at a 510-foot altitude for 80%.
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CONCLUSIONS

It has been shown that substantial noise reductions can be obtained by
proper selection of fan geometries and treatments. It is expected that
advanced lift fan designs can be within the noise level objectives expected
for commercial V/STOL applications. The significant conclusions that can be
drawn from this test program are: :

1. A vane/blade ratio greater than two can significantly reduce noise
in a short duct lift fan.

2. The split vane row, which had 90 vanes in the annulus tip region
and 45 vanes in the annulus hub region, has been shown to be a
poor acoustic simulation of a high vane/blade ratio design. The
split vane row did not reduce fan noise.

3. Vane lean (nonradial vanes) has been shown to provide a substantial
reduction in 1lift fan noise.

4, Changing the rotor-stator spacing of the 45-vane configuration from
0.15 chord to 1 chord significantly reduced fan noise. Increasing
the spacing to two chords provided an additional smaller noise re-
duction. Using 90 leaned vanes, noise reductions were obtained up
to a 2-chord spacing.

5. The use of acoustic treatment on the fan flowpath walls and on the
circular splitter was very effective in reducing fan noise.

6. Acoustically-treated exit louvers reduced aft radiated noise.
Shielding the axial gap between the vanes and the louvers had no
significant effect on the noise measurements.

7. The quietest configuration tested was with 90 leaned vanes at 2-
chord spacing with flowpath and louver treatment. This configura-
tion reduced the fundamental tone PWL by 19.6 dB, the second har-
monic tone PWL by 10.7 dB, and the 150-foot-arc PNL by 13.5 dB.
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APPENDIX A
EFFECTS OF CONFIGURATION CHANGES ON PERFORMANCE

Sources of Performance Effects

The new vane rows have some exit swirl., This swirl is not inherent to
the configuration changes but, rather, was caused by varying the vane orienta-
tion angles linearly with radius to simplify stator manufacture and assembly.
The new vane rows have higher inlet flow Mach numbers because of the reduced
stator inlet area caused by the added vanes, vane stiffening rings, and
acoustic splitter. This effect is not inherent to the configuration changes
but, rather, is due to the limitations of wall curvature modifications to the
existing LF336/A hardware. Vane stiffening rings (see Figure 12) are required
in short-chord vane rows for mechanical reasons. There is a performance loss
caused by vane and ring interaction., The acoustic splitter was truncated at
the base (see Figure 61) to maximize treatment length, which increases base
drag loss.

Measured Effects on Performance

Table V summarizes the measured thrust performance for the LF336/C tests.
The thrust load cell was calibrated to measure thrust forces within 1/2 of 1%.
Performance measurements of Table V are within 1% to 2%, due to measurement
accuracy of thrust, fan speed, ambient conditions for performance corrections,
transient wind effects, and data plotting accuracy.

Spacing - The LF336/A and LF336/B tests showed that, with the 45-vane
stator, there is no measurable performance loss due to increased spacing.

Split Vane Row - LF336/C Tests 2, 6, and 7 (see Table V) showed that
the 90/45-vane row reduced fan thrust about 2.5% below the 45-vane LF336/C
Test 1 base case. This vane row was tested with and without the acoustic
splitter (Tests 2 and 7); there was no measurable effect on performance.
With the splitter installed, the split vane row was tested with and without
acoustic treatment (Tests 2 and 6); there was no measurable effect on per-
formance.

90 Radial Vanes - The 90-vane row with no splitter (Test 9) reduced
fan thrust 3.7%, about 1% more than did the 90/45-vane row. With the splitter
installed (Test 3), the 90-vane row thrust was down 5.7%. The addition of
the splitter in this vane row, therefore, caused an additional 2% loss.
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90 Leaned Vanes - Tests 5, 8, 10, and 11 were compared. At l-chord
spacing without a splitter (Test 8), the thrust loss was 4.6%, about 1% more
than for Test 9 with 90 radial vanes. At 0.15-chord spacing without a
splitter (Test 10), an additional 2% loss was observed, indicating that the
close spacing increased the flow blockage. At 2-chord spacing with the
acoustic splitter (Tests 5 and 11), thrust was down 8.5 to 9.8% from the
45-vane base case, The addition of the splitter quite obviously caused
severe flow blockage, more severe than was the effect of close spacing
observed in Test 10.

Acoustic Exit Louvers - Comparing Tests 11 and 12, the addition of
exit louvers had, within measurement accuracy, no effect on performance.

Effects of Acoustic Features on Advanced Fan Designs

An increase in spacing is expected to have no significant effect on fan
performance in advanced fan designs. The increase in surface area increases
skin friction, but this increase is very small. An increase in the number of
vanes will affect performance only if vane mechanical stiffening rings are
required. The vane-ring interaction is expected to cause between a 1 and 2%
performance loss. Vane lean is expected to have a small effect on performance,
about 1%, due to the radial flow component introduced by the lean angle,
Acoustic splitters will affect performance due to increased skin friction
(very small effect), and by base drag loss (about 1%), if splitters are
truncated at thelr bases. These estimated effects on advanced fan designs
are in some cases less than those measured in the LF336/C tests because of
the limitations of modifications to the existing LF336 fan.
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TABLE 1. LF336/A LIFT FAN DESCRIPTION.

Fan Pressure Ratio 1.30
Fan Tip Diameter, inches 36
Fan Radius Ratio 0.475
Fan Flow, 1bs/sec 218
Bypass Ratio 5.0
Fan Tip Speed, ft/sec 950
RPM 6047
Total Thrust, Unvectored, lbs 5500
Blade Number 42
Vane Number 45
Blade-Vane Axial Spacing, .15
expressed in blade tip chords
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TABLE II. TEST LOG
Spacing, Acoustic Acoustic
Fan Test Date Vane Row Chords Splitter Treatment Louvers Remarks
LF336/A 1 1/69 45 .15 No No No Basepoint Configuration
2 1/69 45 .15 No No Yes Non~Acoustic Louvers
LF336/B 1 2/69 45 2 No No No
LF336/C 1 12/69 45 1 No No No
2 1/70 90/45 2 Yes No No
3 1/70 90 2 Yes No No
4 2/70 90/45 2 Yes Yes No
5 2/70 90/L 2 Yes No No
6 3/70 90/45 2 Yes Yes No Repeat of Test 4
7 3/70 90/45 1 No No No
8 3/70 90/L 1 No No No
9 3/70 90 1 No No No
10 6/70 90/L .15 No No No
11 6/70 90/L 2 Yes Yes No
12 /70 90/L 2 Yes Yes Yes Acoustic Louvers




TABLE III.

SPINNING LOBE NUMBERS FOR 45 & 90 VANES WITH 42 BLADES

45 Vanes 90 Vanes
Integer Lobe Integer Lobe
k Number m k Number m
1 -3 0 42
0 42 1 -48
2 -48 -1 132
-1 87 2 -138
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TABLE

IV. SIDELINE PNL EXTRAPOLATIONS

500' Sideline

1000' Sideline

80% RPM

95% RPM

'80% RPM

'95% RPM

PNL

ANGLE

PNL

ANGLE

PNL

ANGLE

PNL

LF336/A

45 Vanes

.15 Chord Spacing
No Treatment

No Acoustic Louvers

112.6

120

113.1

110

103.4

120

103.4

LF336/C Test 10

90 Leaned Vanes

.15 Chord Spacing
No Treatment

No Acoustic Louvers

107.5

110

109.0

110

98.6

99.6

110

LF336/C Test 11

90 Leaned Vanes

2 Chords Spacing
With Treatment

No Acoustic Louvers

103.0

104.4

90

94.3

110

95.3

90

LF336/C Test 12

90 Leaned Vanes

2 Chords Spacing
With Treatment

With Acoustic Louvers

101.6

110°

93.5

110

Extrapolations assume a standard day and no effect of the ground plane.
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TABLE V

LF336/C Performance Summary

Test 1.

25

LF336/C ACOUSTIC SPACING, ACOUSTIC THRUST
TEST VANES SPLITTER CHORDS LOUVERS CHANGE
1 45 No 1 No 0
7 90/45 No 1 No -2.6%
2 Yes 2 -2.5%
6 Yes 2 -2.7%
9 90 No 1 No -3.7%
3 Yes 2 -5.7%
10 90/L No 15 No -6.6%
No 1 -4.6%
5 Yes 2 -8.5%
11 Yes 2 -9.8%
11 90/L Yes 2 No -9.8%
12 Yes 2 Yes -10.2%
*
Percent thrust change at 95% fan RPM from the base case, LF336/C
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Figure 1. LF336/A Lift Fan



Lg

Figure 2.
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